Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38341275

RESUMO

AIMS: The study aims to explore antifungal properties of bacillibactin siderophore produced by the plant growth-promoting rhizobacterium (PGPR) Bacillus subtilis against fungal phytopathogens Alternaria porri and Fusarium equiseti isolated from Solanum lycopersicum and Solanum melongena plants. METHODS AND RESULTS: Alternaria porri and F. equiseti were isolated from infected plants of eggplant and tomato, respectively. A plate assay was employed to assess the effect of bacillibactin against the phytopathogens. The antifungal potential of the PGPR was evaluated by estimation of dry fungal biomass, visualization of cellular deformity using compound and scanning electron microscopy, antioxidative enzyme assay and analysis of membrane damage via using lipid peroxidation. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis was employed to investigate changes in intracellular iron content. The impact of bacillibactin on pathogenesis was evaluated by infecting detached leaves of S. lycopersicum and S. melongena plants with both the pathogens and treating the infected leaves with bacillibactin. Leaves were further investigated for ROS accumulation, extent of necrosis and cell death. Our findings revealed significant damage to the hyphal structure of A. porri and F. equiseti following treatment with bacillibactin. Biomass reduction, elevated antioxidative enzyme levels, and membrane damage further substantiated the inhibitory effects of the siderophore on fungal growth. ICP-AES analysis indicates an increase in intracellular iron content suggesting enhanced iron uptake facilitated by bacillibactin. Moreover, application of 1500 µg ml-1 bacillibactin on infected leaves demonstrated a substantial inhibition of ROS accumulation, necrosis, and cell death upon bacillibactin treatment. CONCLUSIONS: This study confirms the potent antagonistic activity of bacillibactin against both the phytopathogens A. porri and F. equiseti growth, supporting its potential as a promising biological control agent for fungal plant diseases. Bacillibactin-induced morphological, physiological, and biochemical alterations in the isolated fungi and pathogen-infected leaves highlight the prospects of bacillibactin as an effective and sustainable solution to mitigate economic losses associated with fungal infections in vegetable crops.


Assuntos
Alternaria , Solanum lycopersicum , Solanum , Antifúngicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Solanum/metabolismo , Sideróforos/farmacologia , Produtos Agrícolas/metabolismo , Ferro , Necrose , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
2.
Plant Foods Hum Nutr ; 79(1): 182-188, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38270742

RESUMO

Hypertension is a global health problem and leads to cardiovascular disease and renal injury. Solanum muricatum Aiton leaf extract, rich in flavonoids, is known for its antioxidant capacity. However, the effects of Solanum muricatum Aiton leaf extract on hypertension combined with inflammatory complications were unknown. This study aimed to investigate the impact of Solanum muricatum Aiton leaf extract on hypertension in vivo and in vitro. In vivo, Solanum muricatum Aiton leaf extract led to decrease high blood pressure, improve heart, aorta, and kidney pathology, and enhance the antioxidative activity in spontaneously hypertensive rats (SHR). Our study demonstrated Solanum muricatum Aiton leaf extract inhibited angiotensin-converting enzyme (ACE), epithelial sodium channel (ENaC), sodium glucose co-transporters-1 (SGLT-1), nuclear factor kappa B (NF-κB), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6). In vitro, Solanum muricatum Aiton leaf extract improved the angiotensin II-induced reactive oxygen species (ROS) and mitochondrial membrane depolarization in NRK-52E cells. Besides, Solanum muricatum Aiton leaf extract could also decrease the expressions of ENaC, SGLT-1, and NF-κB in angiotensin II-treated NRK-52E cells. Solanum muricatum Aiton leaf can be suggested as a novel antihypertensive agent ameliorating hypertension via ACE inhibition, inflammation reduction, and ROS. PLE is a novel anti-hypertensive agent to ameliorate hypertension and its complications, including inflammation.


Assuntos
Hipertensão , Solanum , Ratos , Animais , Solanum/metabolismo , Anti-Hipertensivos/farmacologia , Espécies Reativas de Oxigênio , NF-kappa B/metabolismo , Angiotensina II , Antioxidantes/farmacologia , Inflamação , Hipertensão/tratamento farmacológico , Extratos Vegetais/farmacologia , Ratos Endogâmicos SHR
3.
Molecules ; 28(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37446619

RESUMO

Steroidal (glycol)alkaloids S(G)As are secondary metabolites made of a nitrogen-containing steroidal skeleton linked to a (poly)saccharide, naturally occurring in the members of the Solanaceae and Liliaceae plant families. The genus Solanum is familiar to all of us as a food source (tomato, potato, eggplant), but a few populations have also made it part of their ethnobotany for their medicinal properties. The recent development of the isolation, purification and analysis techniques have shed light on the structural diversity among the SGAs family, thus attracting scientists to investigate their various pharmacological properties. This review aims to overview the recent literature (2012-2022) on the pharmacological benefits displayed by the SGAs family. Over 17 different potential therapeutic applications (antibiotic, antiviral, anti-inflammatory, etc.) were reported over the past ten years, and this unique review analyzes each pharmacological effect independently without discrimination of either the SGA's chemical identity or their sources. A strong emphasis is placed on the discovery of their biological targets and the subsequent cellular mechanisms, discussing in vitro to in vivo biological data. The therapeutic value and the challenges of the solanum steroidal glycoalkaloid family is debated to provide new insights for future research towards clinical development.


Assuntos
Alcaloides , Saúde da População , Solanum lycopersicum , Solanum nigrum , Solanum tuberosum , Solanum , Humanos , Solanum/metabolismo , Alcaloides/química , Solanum tuberosum/metabolismo , Solanum nigrum/metabolismo
4.
Cells ; 12(7)2023 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-37048089

RESUMO

Plant-specific transcription factors such as the TCP family play crucial roles in light responses and lateral branching. The commercial development of S. muricatum has been influenced by the ease with which its lateral branches can be germinated, especially under greenhouse cultivation during the winter with supplemented LED light. The present study examined the TCP family genes in S. muricatum using bioinformatics analysis (whole-genome sequencing and RNA-seq) to explore the response of this family to different light treatments. Forty-one TCP genes were identified through a genome-wide search; phylogenetic analysis revealed that the CYC/TB1, CIN and Class I subclusters contained 16 SmTCP, 11 SmTCP and 14 SmTCP proteins, respectively. Structural and conserved sequence analysis of SmTCPs indicated that the motifs in the same subcluster were highly similar in structure and the gene structure of SmTCPs was simpler than that in Arabidopsis thaliana; 40 of the 41 SmTCPs were localized to 12 chromosomes. In S. muricatum, 17 tandem repeat sequences and 17 pairs of SmTCP genes were found. We identified eight TCPs that were significantly differentially expressed (DETCPs) under blue light (B) and red light (R), using RNA-seq. The regulatory network of eight DETCPs was preliminarily constructed. All three subclusters responded to red and blue light treatment. To explore the implications of regulatory TCPs in different light treatments for each species, the TCP regulatory gene networks and GO annotations for A. thaliana and S. muricatum were compared. The regulatory mechanisms suggest that the signaling pathways downstream of the TCPs may be partially conserved between the two species. In addition to the response to light, functional regulation was mostly enriched with auxin response, hypocotyl elongation, and lateral branch genesis. In summary, our findings provide a basis for further analysis of the TCP gene family in other crops and broaden the functional insights into TCP genes regarding light responses.


Assuntos
Arabidopsis , Solanum , Solanum/genética , Solanum/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Perfilação da Expressão Gênica
5.
Molecules ; 28(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37110524

RESUMO

Solanum betaceum Cav., commonly known as tamarillo or Brazilian tomato, belongs to the Solanaceae family. Its fruit is used in traditional medicine and food crops due to its health benefits. Despite the numerous studies involving the fruit, there is no scientific knowledge about the tamarillo tree leaves. In this work, the phenolic profile of aqueous extract obtained from S. betaceum leaves was unveiled for the first time. Five hydroxycinnamic phenolic acids were identified and quantified, including 3-O-caffeoylquinic acid, 4-O-caffeoylquinic acid, chlorogenic acid, caffeic acid and rosmarinic acid. While the extract displayed no effect on α-amylase, the extract inhibited the activity of α-glucosidase (IC50 = 1617 mg/mL), and it was particularly effective for human aldose reductase (IC50 = 0.236 mg/mL): a key enzyme in glucose metabolism. Moreover, the extract exhibited interesting antioxidant properties, such as a potent capacity to intercept the in vitro-generated reactive species O2•- (IC50 = 0.119 mg/mL) and •NO (IC50 = 0.299 mg/mL), as well as to inhibit the first stages of lipid peroxidation (IC50 = 0.080 mg/mL). This study highlights the biological potential of S. betaceum leaves. The scarcity of research on this natural resource underscores the need for additional studies in order to fully explore its antidiabetic properties and to promote the value of a species currently at risk of extinction.


Assuntos
Solanum , Humanos , Solanum/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Frutas , Fenóis/metabolismo , Ácido Clorogênico/farmacologia , Ácido Clorogênico/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo
6.
Plant Cell ; 35(4): 1186-1201, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36625683

RESUMO

Elicitins are a large family of secreted proteins in Phytophthora. Clade 1 elicitins were identified decades ago as potent elicitors of immune responses in Nicotiana species, but the mechanisms underlying elicitin recognition are largely unknown. Here we identified an elicitin receptor in Nicotiana benthamiana that we named REL for Responsive to ELicitins. REL is a receptor-like protein (RLP) with an extracellular leucine-rich repeat (LRR) domain that mediates Phytophthora resistance by binding elicitins. Silencing or knocking out REL in N. benthamiana abolished elicitin-triggered cell death and immune responses. Domain deletion and site-directed mutagenesis revealed that the island domain (ID) located within the LRR domain of REL is crucial for elicitin recognition. In addition, sequence polymorphism in the ID underpins the genetic diversity of REL homologs in various Nicotiana species in elicitin recognition and binding. Remarkably, REL is phylogenetically distant from the elicitin response (ELR) protein, an LRR-RLP that was previously identified in the wild potato species Solanum microdontum and REL and ELR differ in the way they bind and recognize elicitins. Our findings provide insights into the molecular basis of plant innate immunity and highlight a convergent evolution of immune receptors towards perceiving the same elicitor.


Assuntos
Phytophthora , Solanum , Proteínas/metabolismo , Plantas/metabolismo , Phytophthora/genética , Phytophthora/metabolismo , Solanum/metabolismo , Doenças das Plantas
7.
Int J Phytoremediation ; 25(3): 350-358, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35701097

RESUMO

The cadmium (Cd) contaminated agricultural soil has become serious in recent years, but it will take long time for Cd-hyperaccumulator to remedy. To speed up the remediation of agricultural soil and achieve the safe agricultural production as soon as possible, the potential Cd-hyperaccumulator Solanum photeinocarpum Nakamura et Odashima was intercropped with its post-grafting generations in Cd-contaminated soil. Intercropping increased the biomass, Cd contents and Cd extractions of S. photeinocarpum and its post-grafting generations in the pot and field experiments. Both the whole plant or shoot biomass and the Cd extraction by whole plant or shoot in intercroppings had a linear regression relationship with that in monocultures. In the field experiment, intercropping increased the shoot Cd extraction of S. photeinocarpum by 9.86%-40.06% compared with the monoculture. Intercropping increased the content of chlorophyll, activity of superoxide dismutase, activity of catalase, and soluble protein content of S. photeinocarpum and its post-grafting generations but reduced their peroxidase activities in the pot experiment. Therefore, intercropping S. photeinocarpum with its post-grafting generations can improve their phytoremediation ability, and the best choice is S. photeinocarpum intercropped with its post-grafting generation of wild potato rootstock. Novelty statementIntercropping Solanum photeinocarpum Nakamura et Odashima with its post-grafting generations could mutually promote the Cd accumulation in the two types of plant species, and improve their phytoremediation ability for remedying the Cd-contaminated soil.


Assuntos
Poluentes do Solo , Solanum , Cádmio/metabolismo , Solanum/metabolismo , Biodegradação Ambiental , Poluentes do Solo/metabolismo , Raízes de Plantas/química , Solo
8.
BMC Genomics ; 23(1): 547, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915415

RESUMO

BACKGROUND: OSCA (hyperosmolality-gated calcium-permeable channel) is a calcium permeable cation channel protein that plays an important role in regulating plant signal transduction. It is involved in sensing changes in extracellular osmotic potential and an increase in Ca2+ concentration. S. habrochaites is a good genetic material for crop improvement against cold, late blight, planthopper and other diseases. Till date, there is no report on OSCA in S. habrochaites. Thus, in this study, we performed a genome-wide screen to identify OSCA genes in S. habrochaites and characterized their responses to biotic and abiotic stresses. RESULTS: A total of 11 ShOSCA genes distributed on 8 chromosomes were identified. Subcellular localization analysis showed that all members of ShOSCA localized on the plasma membrane and contained multiple stress-related cis acting elements. We observed that genome-wide duplication (WGD) occurred in the genetic evolution of ShOSCA5 (Solhab04g250600) and ShOSCA11 (Solhab12g051500). In addition, repeat events play an important role in the expansion of OSCA gene family. OSCA gene family of S. habrochaites used the time lines of expression studies by qRT-PCR, do indicate OSCAs responded to biotic stress (Botrytis cinerea) and abiotic stress (drought, low temperature and abscisic acid (ABA)). Among them, the expression of ShOSCAs changed significantly under four stresses. The resistance of silencing ShOSCA3 plants to the four stresses was reduced. CONCLUSION: This study identified the OSCA gene family of S. habrochaites for the first time and analyzed ShOSCA3 has stronger resistance to low temperature, ABA and Botrytis cinerea stress. This study provides a theoretical basis for clarifying the biological function of OSCA, and lays a foundation for tomato crop improvement.


Assuntos
Solanum , Botrytis , Cálcio/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum/genética , Solanum/metabolismo , Estresse Fisiológico/genética
9.
Plant Cell Environ ; 45(11): 3305-3321, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36041917

RESUMO

Freezing stress is a major limiting factor in crop production. To increase frost-hardiness of crops via breeding, deciphering the genes conferring freezing-tolerance is vital. Potato cultivars (Solanum tuberosum) are generally freezing-sensitive, but some potato wild species are freezing-tolerant, including Solanum commersonii, Solanum malmeanum and Solanum acaule. However, the underlying molecular mechanisms conferring the freezing-tolerance to the wild species remain to be deciphered. In this study, five representative genotypes of the above-mentioned species with distinct freezing-tolerance were investigated. Comparative transcriptomics analysis showed that SaCBL1-like (calcineurin B-like protein) was upregulated substantially in all of the freezing-tolerant genotypes. Transgenic overexpression and known-down lines of SaCBL1-like were examined. SaCBL1-like was shown to confer freezing-tolerance without significantly impacting main agricultural traits. A functional mechanism analysis showed that SaCBL1-like increases the expression of the C-repeat binding factor-regulon as well as causes a prolonged higher expression of CBF1 after exposure to cold conditions. Furthermore, SaCBL1-like was found to only interact with SaCIPK3-1 (CBL-interacting protein kinase) among all apparent cold-responsive SaCIPKs. Our study identifies SaCBL1-like to play a vital role in conferring freezing tolerance in potato, which may provide a basis for a targeted potato breeding for frost-hardiness.


Assuntos
Solanum tuberosum , Solanum , Calcineurina/genética , Calcineurina/metabolismo , Congelamento , Proteínas Quinases/metabolismo , Solanum/metabolismo , Solanum tuberosum/metabolismo , Transcriptoma/genética
10.
Pest Manag Sci ; 78(11): 4471-4479, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35796079

RESUMO

BACKGROUND: The whitefly Bemisia tabaci causes severe damage to cultivated tomato plants, but actively avoids the wild tomato Solanum habrochaites. Moreover, the mortality of whitefly increases significantly after feeding with the wild tomato. However, additional experiments are warranted to more carefully elucidate the specific molecular elements underlying the interaction between whitefly and wild tomato. RESULTS: Our results showed that S. habrochaites significantly increases the mortality of whitefly adults and decreases both their fertility and fecundity. In addition, the expression of stress-response genes in whitefly after exposure to S. habrochaites was analyzed using RNA sequencing. Weighted gene co-expression network analysis was conducted to identify the hub genes to determine their potential associations with the mortality of whitefly. These results suggested that the expression of heat-shock protein (HSP), multicopper oxidase, and 2-Oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) decarboxylase genes were induced in whitefly. To validate the gene associations with whitefly mortality, a high-throughput in vivo model system and RNAi-based gene silencing were used. The results revealed that the RNAi-mediated depletion of the HSP gene, which belongs to the HSP70 subfamily, increased the mortality of whitefly. Furthermore, the selection pressure analysis showed that a total of five amino acid sites of positive selection were identified, three of which were located in the nucleotide-binding domain and the other two in the substrate-binding domain. CONCLUSIONS: This is the first report on the potential implication of HSPs in whitefly-wild plant interactions. This study could more precisely identify the molecular mechanisms of whitefly in response to wild tomatoes. © 2022 Society of Chemical Industry.


Assuntos
Carboxiliases , Hemípteros , Solanum lycopersicum , Solanum , Aminoácidos/metabolismo , Animais , Carboxiliases/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Hemípteros/fisiologia , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Nucleotídeos/metabolismo , Oxirredutases/metabolismo , Solanum/genética , Solanum/metabolismo
11.
New Phytol ; 236(3): 989-1005, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35892173

RESUMO

Natural variations in cis-regulatory regions often affect crop phenotypes by altering gene expression. However, the mechanism of how promoter mutations affect gene expression and crop stress tolerance is still poorly understood. In this study, by analyzing RNA-sequencing (RNA-Seq) data and reverse transcription quantitative real-time PCR validation in the cultivated tomato and its wild relatives, we reveal that the transcripts of WRKY33 are almost unchanged in cold-sensitive cultivated tomato Solanum lycopersicum L. 'Ailsa Craig' but are significantly induced in cold-tolerant wild tomato relatives Solanum habrochaites LA1777 and Solanum pennellii LA0716 under cold stress. Overexpression of SlWRKY33 or ShWRKY33 positively regulates cold tolerance in tomato. Variant of the critical W-box in SlWRKY33 promoter results in the loss of self-transcription function of SlWRKY33 under cold stress. Analysis integrating RNA-Seq and chromatin immunoprecipitation sequencing data reveals that SlWRKY33 directly targets and induces multiple kinases, transcription factors, and molecular chaperone genes, such as CDPK11, MYBS3, and BAG6, thus enhancing cold tolerance. In addition, heat- and Botrytis-induced WRKY33s expression in both wild and cultivated tomatoes are independent of the critical W-box variation. Our findings suggest nucleotide polymorphism in cis-regulatory regions is crucial for different cold sensitivity between cultivated and wild tomato plants.


Assuntos
Solanum lycopersicum , Solanum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Chaperonas Moleculares/metabolismo , RNA/metabolismo , Solanum/genética , Solanum/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas
12.
Plant J ; 111(4): 1096-1109, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35749258

RESUMO

Anthocyanins are important pigments that impart color in plants. In Solanum, different species display various fruit or flower colors due to varying degrees of anthocyanin accumulation. Here we identified two anthocyanin-free mutants from an ethylmethane sulfonate-induced mutant library and naturally occurring mutants in Solanum melongena, with mutations in the 5' splicing site of the second intron of dihydroflavonol-4-reductase (DFR) - leading to altered splicing. Further study revealed that alternative splicing of the second intron was closely related to anthocyanin accumulation in 17 accessions from three cultivated species: S. melongena, Solanum macrocarpon and Solanum aethiopicum, and their wild related species. Analysis of natural variations of DFR, using an expanded population including 282 accessions belonging to the spiny Solanum group, identified a single-nucleotide polymorphism in the MYB recognition site in the promoter region, which causes differential expression of DFR and affects anthocyanin accumulation in fruits of the detected accessions. Our study suggests that, owing to years of domestication, the natural variation in the DFR promoter region and the alternative splicing of the DFR gene account for altered anthocyanin accumulation during spiny Solanum domestication.


Assuntos
Antocianinas , Solanum , Oxirredutases do Álcool , Processamento Alternativo/genética , Antocianinas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Solanum/genética , Solanum/metabolismo
13.
Molecules ; 27(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35744854

RESUMO

Acyl glucoses are a group of specialized metabolites produced by Solanaceae. Solanum pennellii, a wild-type tomato plant, produces acyl glucoses in its hair-like epidermal structures known as trichomes. These compounds have been found to be herbicides, microbial growth inhibitors, or allelopathic compounds. However, there are a few reports regarding isolation and investigation of biological activities of acyl glucoses in its pure form due to the difficulty of isolation. Here, we report a new acyl glucose, pennelliiside D, isolated and identified from S. pennellii. Its structure was determined by 1D NMR and 2D NMR, together with FD-MS analysis. To clarify the absolute configuration of the acyl moiety of 2-methylbutyryl in the natural compound, two possible isomers were synthesized starting from ß-D-glucose pentaacetate. By comparing the spectroscopic data of natural and synthesized compounds of isomers, the structure of pennelliiside D was confirmed to be 3,4-O-diisobutyryl-2-O-((S)-2-methylbutyryl)-D-glucose. Pennelliiside D and its constituent fatty acid moiety, (S)-2-methylbutanoic acid, did not show root growth-inhibitory activity. Additionally, in this study, chemical synthesis pathways toward pennelliisides A and B were adapted to give 1,6-O-dibenzylpennelliisides A and B.


Assuntos
Solanum lycopersicum , Solanum , Ácidos Graxos/química , Glucose/metabolismo , Solanum lycopersicum/química , Solanum/metabolismo , Tricomas/metabolismo
14.
Biomarkers ; 27(6): 587-598, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35546534

RESUMO

INTRODUCTION: We investigated the effect of African eggplant (AE) (Solanum macrocarpon L) and Black nightshade (BN) (Solanum nigrum L) leaves; two tropical vegetables consumed by humans on behavioural, biochemical and histological indices in Drosophila melanogaster model of Alzheimer's disease (AD). MATERIALS AND METHOD: Transgenic flies expressing human Amyloid Precursor Protein (hAPP) and ß-secretase (hBACE 1) were exposed to the pulverised leaf samples (0.1 and 1.0%) in their diets for fourteen days. Thereafter, the flies were assessed for their behavioural indices and routine histology of brain cells. Furthermore, fly head homogenates were assayed for ß-amyloid level, activities of acetylcholinesterase (AChE) and ß-secretase (BACE-1), as well as oxidative stress markers. RESULTS: Result showed that the significantly lower (p < 0.05) behavioural parameters (survival, locomotor performance and memory index), higher AChE and BACE-1 activities, ß-amyloid, ROS and lipid peroxidation levels, as well as reduced antioxidant indices observed in the AD flies, were significantly ameliorated (p < 0.05) in AD flies treated with the leaf samples. DISCUSSION: This study has showed that leaves of AE and BN ameliorated behavioural and biochemical indices in AD flies via neural enzyme modulatory, and antioxidant mechanisms. CONCLUSION: Hence, this study further justifies the neuroprotective properties of both AE and BN.


Assuntos
Doença de Alzheimer , Preparações de Plantas , Solanum nigrum , Solanum , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/efeitos dos fármacos , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Antioxidantes/metabolismo , Modelos Animais de Doenças , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Preparações de Plantas/farmacologia , Preparações de Plantas/uso terapêutico , Solanum/metabolismo , Solanum nigrum/metabolismo
15.
Curr Top Med Chem ; 22(10): 868-878, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35473546

RESUMO

BACKGROUND: Solanum pubescens Willd, growing wild in the hills of Rayadurg jurisdiction of Southwestern Andhra Pradesh, has gained significant attention among researchers for its diverse folkloric applications, existence of novel phytochemicals and leaf extracts which hold great medicinal promises. To date, the S. pubescens fruit's essential oil (SPO) has never been investigated. METHODS: The current research has been focused to evaluate the chemical composition of S. pubescens fruit essential oil through Gas Chromatography-Mass Spectrometry (GC-MS), followed by the investigation of antibacterial, antifungal, anti-inflammatory, analgesic and wound healing activities in appropriate models to uncover its biological potentials. Extraction of (Solanopuboil/SPO) from the fresh unripe fruits of Solanum pubescens was carried out in Buchner funnel and Whatman no.10 filter paper and concentrated at 40°C using a rotary evaporator. The metabolic profiling of SPO was analysed by GC-MS technique. The MIC, MBC, activity index, and total antimicrobial activity of SPO were evaluated using standard procedures. Anti-inflammatory activity of SPO was screened using Carrageenan induced paw oedema and Cotton pellet-induced granuloma. Tail immersion test, Acetic acid writhing response and Formalin paw lick test was performed in rats in order to examine the analgesic activity of SPO. Wound healing activity of SPO was investigated by performing the incision wound model, Excision wound model and Dead space wound model in rats. RESULTS: The SPO displayed a constant degree of antimicrobial activity against B. cereus, B. subtilis, E. coli, A. niger, A. fumigatus and C. albicans with significant anti-inflammatory and analgesic activities. Also, a prominent wound healing potential of it was observed in excision, incision and dead space wound models with considerable elevation in granulation tissue hydroxyproline, hexuronic acid and hexosamine content in association with remarkable regulation of anti-inflammatory and antioxidant markers i.e., Lipid peroxidase (LPO), Nitric Oxide (NO), Superoxide dismutase (SOD), Glutathione (GSH), Catalase (CAT), Glutathione Peroxidase (GPx). CONCLUSION: These findings strongly validate the therapeutic potential of S. pubescens fruit essential oil in antimicrobial and anti-inflammatory mediated wound healing and suggests its promising application as valuable and novel indigenous leads in the food and pharmaceutical industries. To the best of our knowledge, this is the first-ever investigatory report on the systematic phytochemical and therapeutic examination of S. pubescens fruit essential oil.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Solanum , Analgésicos/farmacologia , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Escherichia coli/metabolismo , Frutas , Camundongos , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Compostos Fitoquímicos , Extratos Vegetais/química , Ratos , Solanum/metabolismo , Vertebrados/metabolismo , Cicatrização
16.
New Phytol ; 234(4): 1394-1410, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35238413

RESUMO

Solanum steroidal glycoalkaloids (SGAs) are renowned defence metabolites exhibiting spectacular structural diversity. Genes and enzymes generating the SGA precursor pathway, SGA scaffold and glycosylated forms have been largely identified. Yet, the majority of downstream metabolic steps creating the vast repertoire of SGAs remain untapped. Here, we discovered that members of the 2-OXOGLUTARATE-DEPENDENT DIOXYGENASE (2-ODD) family play a prominent role in SGA metabolism, carrying out three distinct backbone-modifying oxidative steps in addition to the three formerly reported pathway reactions. The GLYCOALKALOID METABOLISM34 (GAME34) enzyme catalyses the conversion of core SGAs to habrochaitosides in wild tomato S. habrochaites. Cultivated tomato plants overexpressing GAME34 ectopically accumulate habrochaitosides. These habrochaitoside enriched plants extracts potently inhibit Puccinia spp. spore germination, a significant Solanaceae crops fungal pathogen. Another 2-ODD enzyme, GAME33, acts as a desaturase (via hydroxylation and E/F ring rearrangement) forming unique, yet unreported SGAs. Conversion of bitter α-tomatine to ripe fruit, nonbitter SGAs (e.g. esculeoside A) requires two hydroxylations; while the known GAME31 2-ODD enzyme catalyses hydroxytomatine formation, we find that GAME40 catalyses the penultimate step in the pathway and generates acetoxy-hydroxytomatine towards esculeosides accumulation. Our results highlight the significant contribution of 2-ODD enzymes to the remarkable structural diversity found in plant steroidal specialized metabolism.


Assuntos
Alcaloides , Dioxigenases , Solanum lycopersicum , Solanum tuberosum , Solanum , Alcaloides/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Ácidos Cetoglutáricos/metabolismo , Solanum lycopersicum/genética , Solanum/genética , Solanum/metabolismo , Solanum tuberosum/genética
17.
PeerJ ; 10: e12955, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251781

RESUMO

Salt stress causes the quality change and significant yield loss of tomato. However, the resources of salt-resistant tomato were still deficient and the mechanisms of tomato resistance to salt stress were still unclear. In this study, the proteomic profiles of two salt-tolerant and salt-sensitive tomato cultivars were investigated to decipher the salt-resistance mechanism of tomato and provide novel resources for tomato breeding. We found high abundance proteins related to nitrate and amino acids metabolismsin the salt-tolerant cultivars. The significant increase in abundance of proteins involved in Brassinolides and GABA biosynthesis were verified in salt-tolerant cultivars, strengthening the salt resistance of tomato. Meanwhile, salt-tolerant cultivars with higher abundance and activity of antioxidant-related proteins have more advantages in dealing with reactive oxygen species caused by salt stress. Moreover, the salt-tolerant cultivars had higher photosynthetic activity based on overexpression of proteins functioned in chloroplast, guaranteeing the sufficient nutrient for plant growth under salt stress. Furthermore, three key proteins were identified as important salt-resistant resources for breeding salt-tolerant cultivars, including sterol side chain reductase, gamma aminobutyrate transaminase and starch synthase. Our results provided series valuable strategies for salt-tolerant cultivars which can be used in future.


Assuntos
Solanum lycopersicum , Solanum nigrum , Solanum , Solanum lycopersicum/genética , Solanum/metabolismo , Proteômica , Proteínas de Plantas/genética , Melhoramento Vegetal , Solanum nigrum/metabolismo
18.
Molecules ; 27(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35209098

RESUMO

Sixteen organic acids were quantified in peel and pulp of Amber, Laird's Large and Mulligan cultivars of tamarillo using GC-MS. Fourteen of these compounds had not previously been quantified in tamarillo. An untargeted metabolomics approach was used in parallel to identify and quantify 64 more metabolites relative to the internal standard, indicating abundances of glutamic acid, pro-line, aspartic acid and γ-aminobutyric acid as well as lower concentrations of several other essential fatty acids and amino acids. The main findings were that total organic acid concentration was significantly higher (p < 0.05) in pulp than in peel, with the highest concentration seen in Mulligan pulp (219.7 mg/g DW). Remarkably, after citric acid, the potent bactericide itaconic acid was the second most abundant organic acid. At least 95% of organic acids in tamarillo were one of these two acids, as well as cis-aconitic, malic and 4-toluic acids. Differences between cultivar chemotypes were as substantial as differences between tissues. These results suggest that the bitter flavour of the peel does not result from organic acids. The combination of targeted and untargeted metabolomics techniques for simultaneous qualitative and quantitative investigation of nutrients and flavours is efficient and informative.


Assuntos
Ácidos/análise , Formiatos/química , Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos/análise , Solanum/química , Ácidos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metaboloma , Metabolômica/métodos , Compostos Orgânicos/metabolismo , Reprodutibilidade dos Testes , Solanum/metabolismo
19.
Dokl Biochem Biophys ; 507(1): 340-344, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36786998

RESUMO

The expression of the genes of carotenoid-cis-trans-isomerases CrtISO, CrtISO-L1, and CrtISO-L2 was studied in comparison with the content of carotenoids in tomato species with different ripe fruit colors: green (Solanum habrochaites), yellow (S. cheesmaniae), and red (S. pimpinellifolium and S. lycopersicum). More ancient origin of CrtISO-L2 in relation to CrtISO and CrtISO-L1 was shown. A similar content of total carotenoids (leaves) and ß-carotene (ripe fruits) between the samples was found. Unlike the fruits of S. habrochaites and S. cheesmaniae, the red fruits accumulated lycopene and 20-30 times greater total carotenoids. The highest level of transcripts both in leaves and in ripe fruits was detected for CrtISO. The CrtISO-L1 and CrtISO-L2 genes were transcribed at high levels in leaves and at low levels in fruits, except for the high expression of CrtISO-L2 in S. lycopersicum fruits. No correlation between the content of carotenoids and the level of gene expression in the fruit was observed. In the leaves, a positive correlation between the amount of carotenoids and the levels of CrtISO-L1 and CrtISO-L2 transcripts was found.


Assuntos
Solanum lycopersicum , Solanum , Solanum lycopersicum/genética , Solanum/genética , Solanum/metabolismo , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismo , Carotenoides/metabolismo , Licopeno/metabolismo , Frutas/genética , Frutas/metabolismo
20.
Int J Phytoremediation ; 24(7): 753-762, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34514885

RESUMO

Cadmium (Cd) contamination of orchard soils is a global problem that has been increasing. To decrease the Cd accumulation in fruits, intercropping the orchard crops with hyperaccumulator plants has been used for soil remediation. A pot and a field experiment were conducted to study the effects of intercropping the potential Cd-hyperaccumulator Solanum photeinocarpum and its post-grafting generations with loquat (Eriobotrya japonica) on the growth and Cd uptake of these two plant species. In the pot experiment, intercropping improved the biomass, Cd content, Cd extraction, and root-to-shoot Cd translocation in both species. Intercropping increased the DNA methylation levels, antioxidant enzyme activity, and soluble protein content of loquat seedlings. These results indicate that intercropping could improve the phytoremediation of S. photeinocarpum and its post-grafting generations and increase the Cd uptake in loquat seedlings. In the field experiment, intercropping increased the Cd contents in the old branches, while it decreased that in the young branches and fruits of loquat. These findings indicate that intercropping could increase the Cd uptake in old tissues but reduce the Cd uptake in young tissues and fruits of loquat. So, intercropping loquat with S. photeinocarpum and its post-grafting generations could be used in Cd-contaminated orchards.


Intercropping the potential Cd-hyperaccumulator Solanum photeinocarpum and its post-grafting generations with loquat mutually promoted the growth of two plant species, and also promoted the cadmium uptakes in S. photeinocarpum and old branches of loquat, while inhibited the Cd uptake in the loquat young tissues (young branches and fruits). These results are the new findings of the intercropping.


Assuntos
Eriobotrya , Poluentes do Solo , Solanum , Biodegradação Ambiental , Cádmio/metabolismo , Eriobotrya/metabolismo , Raízes de Plantas/metabolismo , Plântula , Solo , Poluentes do Solo/metabolismo , Solanum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...